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RELATIVISTIC AND NON-RELATIVISTIC MOMENTUM SPACE 

WAVEFUNCTIONS FOR CHARMONIUM AND BOTTOMONIUM 

STATES 

 Shwe Sin Oo1, Khin Maung Maung2 

Abstract 

In the constituent quark model, charmonium and bottomonium are considered to be the bound states 

of charm/anti-charm and bottom/antibottom quarks. We use the linear potential to represent the long 

distance confining part of the potential and a Coulomb like potential to represent the short distance 

one-gluon exchange part of the potential. In order to study the general features of the wave functions, 

it is not necessary to include spin dependent parts in the potential. Using the above mentioned 

potentials, we solved the Schrodinger equation with non-relativistic kinematics and also with 

relativistic kinematics. We solve these equations by expanding the momentum space wavefunction 

in a complete set of orthonormal basis functions and turning the Schrodinger equation into a standard 

matrix eigen-value equation. We vary the masses of the quarks, and the strengths of the potentials 

until we get a satisfactory fit to the spin averaged mass spectra of the desired 𝑞𝑞̅ system. The 

eigenvectors gives the coefficients of the linear combination in the wavefunction expansion from 

which we can construct the wavefunctions. We compare the non- relativistic and relativistic 

wavefunctions for each state in 𝑏𝑏̅ and 𝑐𝑐̅  systems. 
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Introduction 

Meson as a two-body bound state of quark-antiquark pair has been a fertile ground for the 

study of two-body relativistic equations and also for phenomenology. Most studies restrict 

themselves to non-relativistic Schrodinger equation in position space, since the solution methods 

are well known and in some cases, analytical solutions exist. Commonly used methods are the well 

known Numerov method combined with wavefunction and its derivative matching at a 

predetermined location. The input is the eigen-energy and it is varied until the desired tolerance is 

achieved for the log-derivative matching. For each angular momentum value l this has to be done 

for all the states of interest. Although this is not an economical way of doing things, it can be done. 

But if we want to use relativistic kinematics, one can no longer use position space representation 

of the Schrodinger equation.  

The non-relativistic kinetic energy operator  𝑝̂2 2𝜇⁄  (𝜇 is the reduced mass)is now replaced 

by √𝑝̂2 + 𝑚1
2+√𝑝̂2 + 𝑚2

2 in the center of mass frame. Since quantization gives 𝑝̂ → −𝑖ℏ∇, we will 

have differential operator under the radical sign. This problem is best treated in momentum 

representation. In this case both the non-relativistic and the relativistic Schrodinger equations are 

integral equations and the momentum operator 𝑝̂ becomes just a number in this representation. In 

the case of linear potential and Coulomb like potentials, there is a minor complication of removable 

singularities in the momentum representation of these potentials. Well known subtraction methods 

exist. We can also add spin-spin and spin-orbit potentials to our problem without any technical 

complications. But the spin-orbit splitting between 1S0 and 3S1 in 𝑏𝑏̅ system is about 50 MeV while 

the mass of the meson is about10,000 MeV. This is of the order of 0.5%. Therefore, in this stage 

of the study of the wavefunctions, we neglect the spin dependent part of the potential. In the next 

section, we will describe how we will solve the Schrodinger equation in momentum space with 

non-relativistic and relativistic kinematics. We will also explain how the wave function can be 

obtained once the eigen-value problem is solved. In section III, we will show our results of eigen-
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values and their fit to the spin-averaged meson spectra. We will also compare the relativistic and 

non-relativistic wavefunctions. We than make conclusions based on our results. 

 

The Solution Method 

The Schrodinger equation in momentum representation can be written as 

𝐷(𝑚1, 𝑚2, 𝑝) + ∫ 𝑉(𝑝̅, 𝑝̅′)𝜙(𝑝̅′)𝑑𝑝̅′ = 𝐸𝜙(𝑝̅)          (1) 

Here 𝐷(𝑚1, 𝑚2, 𝑝) = 𝑝2 2𝜇⁄  for the case with non-relativistic kinematics and                      

𝐷(𝑚1, 𝑚2, 𝑝) = √𝑚1
2 + 𝑝2+√𝑚2

2 + 𝑝2 for the relativistic case. Now 𝑉(𝑝̅, 𝑝̅′)  is the Fourier 

transform of the position space potential. 

       𝑉(𝑟) = 𝑙𝑖𝑚
𝜂→0

(𝜎𝑟𝑒−𝜂𝑟 −
𝐶𝑒−𝜂𝑟

𝑟
)                                (2) 

Here 𝜎and C are the strengths of the linear and the Coulomb like potentials. We have used the 

exponential damping factor 𝜂 since the straight forward Fourier transforms of linear potential and 

Coulomb potential do not exist. After the Fourier transform and partial wave decomposition, we 

can take the 𝜂 → 0 limit explicitly . 

The Fourier transforms of the damped potentials in equation (2) are given by 

𝑉(𝑝̅, 𝑝̅′) = lim
𝜂→0

[
𝜎

2𝜋2

𝜕2

𝜕𝜂2 (
1

𝑞2+𝜂2) −
𝐶

2𝜋2 (
1

𝑞2+𝜂2)]             (3) 

Since we do not have any potential that couples angular momentum, we can take the orbital angular 

momentum l as a good quantum number and write 

𝜙(𝑝̅) = 𝜙𝑛𝑙(𝑝)Y𝑙
m(𝑝̂)                      (4) 

Now after the angular decomposition Schrodinger equation can be written for each l as 

𝐷(𝑚1, 𝑚2, 𝑝2)𝜙𝑛𝑙(𝑝) + ∫ 𝑉𝑙(𝑝, 𝑝′)𝜙𝑛𝑙(𝑝′)𝑝′2∞

0
𝑑𝑝′ = 𝐸𝑛𝑙𝜙𝑛𝑙(𝑝)       (5) 

Here the lth partial wave component of the potential is given by  

𝑉𝑙(𝑝, 𝑝′) = 2π ∫ 𝑉(𝑝, 𝑝′)𝑃𝑙(𝑥)𝑑𝑥
1

−1
                    (6) 

=
1

𝜋𝑝𝑝′ 𝑙𝑖𝑚
𝜂→0

(𝜎
𝜕2

𝜕𝜂2 𝑄𝑙(𝑦) − 𝐶𝑄𝑙(𝑦))                (7) 

Here, Ql(y) is the Legendre polynomial of the second kind and the argument 
𝑦 = (𝑝2 + 𝑝′2 + 𝜂2) 2𝑝𝑝′⁄ . In the 𝑙𝑖𝑚𝜂→0limit, Ql(y) and its derivatives have a removable 

singularity as can be seen here. 

𝑄𝑙(𝑦) = 𝑄0(𝑦)𝑃𝑙(𝑦) − 𝑊𝑙−1(𝑦)              (8) 

and Q0(y) and Wl-1 (y) are given by 

   𝑄0(𝑦) =
1

2
ln [

y+1

y−1
]                                   (9) 

and 

𝑊𝑙−1(𝑦) = ∑
1

m
P𝑙−m(y)l

m=1 Pm−l(y)        (10) 

We immediately see that although Wl-1 (y) has no singularties but Ql(y) and its derivatives do 

through Q0(y) at y = 1 which corresponds to p=p' case in the limit of 𝜂 → 0. In order to handle 

these singularities, we use the method developed by Maung, Kahana and Norbury [2]. In order to 
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solve equation (5), we expand the wavefunction 𝜙𝑛𝑙(𝑝) in complete orthonormal basis set of 

functions. i.e 

         𝜙𝑛𝑙(𝑝) = ∑ 𝐶𝛼𝑙𝑔𝛼𝑙(𝑝)N
α=1                          (11) 

Here, for the 𝑔𝛼𝑙(𝑝)’s we use a complete orthonormal set of functions given in terms of Jacobi 

polynomials [4] and 𝐶𝛼𝑙 are the expansion coefficients. The set of functions 𝑔𝛼𝑙(𝑝) are given by 

𝑔𝛼𝑙(𝑝) =
1

√𝑁𝛼𝑙

(𝑝 𝑏⁄ )𝑙

[(𝑝 𝑏⁄ )2+1]𝑙+2 𝑃𝛼

(𝑙+
3

2
,𝑙+

1

2
)

(
𝑝2−𝑏2

𝑝2+𝑏2)            (12) 

𝑁𝛼𝑙 =
𝑏3

2(2𝑛+2𝑙+3)

Γ(𝑛+𝑙+5 2⁄ )Γ(𝑛+𝑙+3 2⁄ )

𝑛!Γ(𝑛+2𝑙+3)
                         (13) 

where Nl is the normalization constant and b is a parameter that be used as the variational 

parameter. 𝑃𝛼
(𝑎,𝑐)

(𝑥) are the Jacobi polynomials. These expansion functions 𝑔𝛼𝑙(𝑝) obey 

orthonormal condition 

∫ 𝑔𝛼𝑙(𝑝)𝑔𝛽𝑙(𝑝)𝑝2∞

0
𝑑𝑝 = 𝛿𝛼𝛽                                 (14) 

We now use the expansion given by equation (11) in (5) and furthermore, we multiply by p2𝑔𝛼𝑙(𝑝) 

and integrating over p we obtain 

∑ 𝐶𝛼𝑙(∫ 𝑔𝛽𝑙(𝑝)𝐷(𝑚1, 𝑚2, 𝑝2)𝑔𝛼𝑙(𝑝)𝑝4𝑑𝑝)
∞

0
+ ∬ 𝑔𝛽𝑙(𝑝)𝑉𝑙(𝑝, 𝑝′)𝑔𝛼𝑙(𝑝′)𝑝2𝑝′2𝑑𝑝𝑑𝑝′∞

0
) = 𝐸𝛼𝑙𝐶𝛽𝑙

𝑁
𝛼=1      (15) 

This is in the form of a simple matrix eigenvalue equation for each l. i.e. 

∑ 𝐴𝛽𝛼𝐶𝛼𝑙 = 𝐸𝛼𝑙𝐶𝛽𝑙
𝑁
𝛼=1                         (16) 

Once the eigen-equation is solved, we obtain the eigen-energies and for each energy we get a set 

of coefficients 𝐶𝛼.Then, by using equation (11) we can construct the wavefunction corresponding 

to the desired state. 

 

Results 

In this section we show the results of our calculations. As explained previously, we do not 

include spin-spin and spin-orbit potentials. Therefore, before we fit the meson spectrum, we do the 

spin-averaging of the masses. First of all, meson states are given in the spectroscopic notation as n 
2S+1LJ, where the S is in the superscript is the total spin which is either S = 0 (singlet state) or S = 1 

(triplet state). L is the orbital angular momentum quantum number and they are traditionally named 

as S, P, D etc. for L = 0, 1, 2, … respectively. For example, for l = 0 case there are four states, 

namely 1S0 (1 state) and 3S1 (3 states). Therefore, the spin-average masses M(nS) for l = 0 states 

are calculated from 

𝑀(𝑛𝑆) =
[𝑀(𝑛 1𝑆0)+3𝑀(𝑛 3𝑆1)]

4
                                       (17) 

and the spin-averaged masses for P-states are calculated by 

 

𝑀(𝑛𝑃) =
𝑀(𝑛 3𝑃0)+3𝑀(𝑛 3𝑃1)+3𝑀(𝑛 1𝑃1)+5𝑀(𝑛 3𝑃2)

12
        (18) 
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Table 1 Spin-averaged experimental meson masses(MeV) and calculations (Non-Relativistic) 

Mc = 1321.5 MeV, Mb = 4763.8 MeV 

State 𝑪𝑪̅ Calculation 𝑪𝑪̅ Experiment 𝑩𝑩̅ Calculation 𝑩𝑩̅ Experiment 

1S 

2S 

3S 

4S 

5S 

3068.84 

3720.06  

4206.86  

4556.18  

5000.25  

3068.65 

3673.95 

 

9444.58 

10036.25 

10400.47 

10696.73 

10957.12 

9444.98 

10017.2 

1P 

2P 

3P 

4P 

5P 

3518.43 

4029.52   

4462.01 

4848.62 

5203.97 

3525.31 9928.74 

10303.95 

10607.15 

10872.57 

11113.65 

9899.73 

 

Table 2 Spin-averaged experimental meson masses(MeV) and calculations (Relativistic)              

Mc = 1352.19 MeV, Mb = 4783.42 MeV 

State 𝑪𝑪̅ Calculation 𝑪𝑪̅ Experiment 𝑩𝑩̅ Calculation 𝑩𝑩̅ Experiment 

1S 

2S 

3S 

4S 

5S 

3068.47 

3679.80 

4123.95 

4496.53 

4826.01 

3068.65 

3673.95 

9444.50 

10044.11 

10404.81 

10695.39 

10949.15 

9444.98 

10017.2 

1P 

2P 

3P 

4P 

5P 

3480.28  

3945.98  

4332.98  

4673.12  

4981.049  

3525.31 99564.39 

10324.25 

10620.19 

10878.08 

11326.93 

9899.73 

 

In these calculations, we fixed the strength of the linear potential to 0.2 GeV2and Coulomb 

like potential strength to -0.5. We vary only the quark masses. Once the 1S state is adjusted to the 

experimental value with a tolerance of 0.05% we keep the quark mass value. We then use the same 

parameter set for L=1 p-wave case. We do the same procedure for both the non relativistic and 

relativistic cases.  

 (a) (b)

) 
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 Figure (a-h)  Non-relativistic and relativistic wavefunctions for b-bbar and c-cbar syatems 

 

Conclusions 

In the figures, we compare non-relativistic and relativistic wavefunctions for, 1S, 2S, 1P 

and 2P states for b-bbar and c-cbar systems. All wavefunctions are normalized. First of all we note 

that just like in the r-space wavefunctions, the ground state for each angular momentum L has no 

nodes in the wavefunction. The first excited state has one node etc. We see that the differences 

(g) (h) 

(e) (f) 

(c) (d) 
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between the relativistic and non-relativistic wavefunctions are small for b-bbar system. It is 

reasonable since it is a much heavier system. We also note that as L becomes higher, the difference 

is more pronounced and for the same L, excited states show more difference between relativistic 

and non-relativistic case. In the future, the prediction of decay rates will be done and compared 

with experimental results. In these calculations, the differences in the wavefunction will be 

important. 
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